PEREGRINN: Penalized-Relaxation Greedy
Neural Network Verifier*

Haitham Khedr®, James Ferlez, and Yasser Shoukry

University of California, Irvine, USA
{hkhedr, jferlez,yshoukry}Quci.edu

Abstract. Neural Networks (NNs) have increasingly apparent safety
implications commensurate with their proliferation in real-world appli-
cations: both unanticipated as well as adversarial misclassifications can
result in fatal outcomes. As a consequence, techniques of formal verifi-
cation have been recognized as crucial to the design and deployment of
safe NNs. In this paper, we introduce a new approach to formally verify
the most commonly considered safety specifications for ReLU NNs — i.e.
polytopic specifications on the input and output of the network. Like
some other approaches, ours uses a relaxed convex program to mitigate
the combinatorial complexity of the problem. However, unique in our
approach is the way we use a convex solver not only as a linear feasibil-
ity checker, but also as a means of penalizing the amount of relaxation
allowed in solutions. In particular, we encode each ReLU by means of
the usual linear constraints, and combine this with a convex objective
function that penalizes the discrepancy between the output of each neuron
and its relaxation. This convex function is further structured to force the
largest relaxations to appear closest to the input layer; this provides the
further benefit that the most “problematic” neurons are conditioned as
early as possible, when conditioning layer by layer. This paradigm can
be leveraged to create a verification algorithm that is not only faster in
general than competing approaches, but is also able to verify considerably
more safety properties; we evaluated PEREGRINN on a standard MNIST
robustness verification suite to substantiate these claims.

Keywords: Machine Learning/Al - Decision Procedures and Solvers

1 Introduction

Neural Networks have become an increasingly central component of modern
machine learning systems, including those that are used in safety-critical cyber-
physical systems such as autonomous vehicles. The rate of this adoption has
exceeded the ability to reliably verify the safe and correct functioning of these
components, especially when they are integrated with other components such as
controllers. Thus, there is an increasing need to verify that NNs reliably produce
safe outputs, especially subject to malicious adversarial inputs [16, 20, 27, 28].

* This work was sponsored by the NSF awards #CNS-2002405 and #CNS-2013824.

2 Khedr et al.

In this paper, we propose PEREGRINN, an algorithm for efficiently and
formally verifying the input/output behavior of ReLU NNs. In this context,
PEREGRINN falls into the broad category of sound and complete search and
optimization NN verifiers [22]. The search aspect of PEREGRINN involves
iterating over different combinations of neuron activation patterns to verify that
each is compatible with the specified safety constraints (on the input and output
of the network). Like other algorithms in this category, PEREGRINN combines
this search with optimization techniques to make inferences about the feasibility of
full-network activation patterns on the basis of activation patterns of only a subset
of neurons. The optimization in question reformulates the original NN feasibility
problem into a relaxed convex feasibility problem to allow sound inferences: i.e.
if the convex relaxation is infeasible, then the original NN problem may soundly
be concluded to be infeasible. In this relaxed feasibility problem, the output of
each individual neuron is assigned a relaxation variable that is decoupled from
the actual output of that neuron. PEREGRINN also uses a type of reachability
analysis (symbolic interval analysis) both to enhance the optimization-based
inference described above and as a source of additional sound inference itself. For
this reason, PEREGRiINN’s search procedure searches neurons in a layer-by-layer
fashion, preferring to fix the phases of neurons closest to the input layer first.

In contrast to other search and optimization algorithms, however, PERE-
GRINN augments each convex feasibility query with a (convex) penalty function
in order to obtain better guidance on which activation patterns to search next.
In particular, we note that the amount of relaxation needed on a neuron can be
regarded as a quasi-measure of how close the convex solver came to operating
the associated neuron in a valid regime — i.e. at a valid evaluation of that neuron
on a particular input. In this sense, the amount of relaxation in aggregate can
be regarded as a quasi-measure of how close the solver came to finding a valid
evaluation of the network as a whole. Inversely, the largest distance between a re-
laxation variable and its neuron’s closest ReLU constraint intuitively corresponds
in some sense to how “problematic” that neuron is with regard to obtaining such a
valid evaluation. These distances we refer to as the “slacks” for each neuron. Thus,
PEREGRINN may be regarded as greedily minimizing a slack-based penalty.

Finally, we evaluated the performance of PEREGRINN by using it to verify
the adversarial robustness of networks trained on the MNIST [21] dataset. Our
experiments show that PEREGRINN is on average 1.27x faster than Neurify [31],
1.24x faster than Venus [6], 1.15x faster than nnenum [4], and 1.65x faster than
Marabou [19]. It also proves 27 %, 19 %, 10 %, and 51 % more properties than the
other solvers, respectively. PEREGRINN’s unique convex penalty augmentations
are also considered in ablation experiments to validate their benefits.

Related work. Since PEREGRINN is a sound and complete verification algorithm,
we restrict our comparison to other sound and complete algorithms. NN verifiers
can be grouped into roughly three categories: (i) SMT-based methods, which
encode the problem into a Satisfiability Modulo Theory problem [11, 18, 19];
(ii) MILP-based solvers, which directly encode the verification problem as a
Mixed Integer Linear Program [3,5-8,14,23,29]; (iii) Reachability based methods,

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 3

h Component

1
nfeasivie? Infeasib
SAFE
| Sampling Bise y i sise |Convex Program|
Inforence nference Inference
nference Jondition New|
Neuron

.......................

Fig. 1: Block Diagram of the PEREGRINN Algorithm

which perform layer-by-layer reachability analysis to compute the reachable
set [4,13,15,17,30,32,34,35]; and (iv) convex relaxations methods [10,31,33]. In
general, (i), (ii) and (iii) suffer from poor scalability. On the other hand, convex
relaxation methods depend heavily on pruning the search space of indeterminate
neuron activations; thus, they generally depend on obtaining good approximate
bounds for each of the neurons in order to reduce the search space (the exact
bounds are computationally intensive to compute [9]). These methods are most
similar to PEREGRINN: for example, [7,25,32] recursively refine the problem
using input splitting, and [31] does so via neuron splitting. Other search and
optimization methods include: Planet [11], which combines a relaxed convex
optimization problem with a SAT solver to search over neurons’ phases; and
Marabou [19], which uses a modified simplex algorithm.

2 Problem formulation

In this paper, we will consider Rectified Linear Unit (ReLU) NNs. An n-layer
ReLU network, is a composition of n ReLU layer functions: i.e. NN = f, o
fn_10---0 f1 where the i*" ReLU layer function is defined as f; : y € RFi-1
max{W;y + b;, 0} € R¥. We refer to f; as the input layer. Finally, to refer to
individual neurons, we use the notation (2); to indicate the ;' element of 2.
Verification Problem. Let AA be an n-layer NN as defined above. Fur-
thermore, let P,, C R*o be a convex polytope in the input space of A, and
let P,, C R*» be a convex polytope in the output space of NN. Finally, let
he : RFo x RF» — R, £ =1,...,m be convex functions defining joint input /output
constraints on AN Then the verification problem is to decide whether

{m € RFo

v Py ANN@) € Py A (R bl NN (@) < 0)} —0. ()

3 PEREGRINN Overview

The general structure of PEREGRINN is depicted in Fig. 1. Like other search
and optimization based NN verifiers it has two main components: a search
component and an inference component, and PEREGRINN iterates back and forth

4 Khedr et al.

between these these two components until termination. In particular, the search
and inference components interact in the following way. The search component
successively iterates over all possible on/off activations for each neuron; this is
done by fixing these activations one neuron at a time, starting from the input
layer and working towards the output layer. The process of fixing a neuron’s
activation is referred to as conditioning its phase: each neuron can be in either its
active phase (operating linearly) or inactive phase (outputting zero). Thus, the
search component provides the inference component a subset of neurons, each of
which has been conditioned; the inference component then attempts to soundly
reason about whether the remaining, unconditioned neurons can be operated in
such a way as to violate the safety constraint. If the inference component soundly
concludes safety for all possible activations of the remaining unconditioned
neurons, then the search component backtracks, oppositely reconditioning one of
the neurons that was already conditioned. Otherwise, if a sound safe conclusion
is not made, then the search component uses information from the inference
component to decide on a new neuron to condition, and the process repeats. The
algorithm terminates if either a counterexample to safety is found, or else all
possible neuron activations are considered without finding such a counterexample.

The convex program inference block is at the heart of the inference component
and PEREGRINN itself. In this block, PEREGRINN, like other search and
optimization solvers, uses a relaxed linear feasibility program where the output
of each individual neuron is assigned a relaxation variable that is decoupled from
the actual output of that neuron. In the notation of Section 2, such a linear
feasibility program can be written as follows, where the vector variables y;,7 # 0
are the relaxation variables.

¥i >0, y; > Wiyi—1 +b; Vi=1,...,n
m
Yo € Py, yn € Py, Z/Z\lhf(yOvyn) <0

(2)
Importantly, if (2) is infeasible, then the original NN problem in (1) may be
soundly concluded to be infeasible as well — and hence, safe. However, as described
above, the primary function of the convex feasibility program is to use a set of
conditioned neurons supplied by the search component in order to soundly reason
about the remaining neurons. To do this, the conditioned neurons supplied by the
search component are incorporated into the feasibility program (2) as equality
constraints in the following way:

Neuron (y;); ON: (y;); = (Wiyi—1 +bi); A(yi); >0 (3)
Neuron (yl)j OFF: (yz)j =0A (Wiyi—l + b?,)j < 0. (4)

Inferences created by the symbolic interval inference block using Symbolic Interval
Analysis [32] are also incorporated using equality constraints like (3) and (4).

Of the remaining blocks, the “Backtracking & Reconditioning” block is essen-
tially described above. The “Condition New Neuron” and “Sampling Inference”
blocks have features unique to PEREGRINN that are described in Section 4;
the former implements a novel neuron prioritization, and the latter is a unique
approach to quickly obtaining initial safety counterexamples.

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 5

4 PEREGRINN Enhancements

4.1 Sum-of-Slacks Penalty

The core enhancement in PEREGRINN is the inclusion of a specific objective
function in the convex program used by the inference component. As per the
discussion above, this objective function is interpreted as a penalty on how far
away a particular solution is from a valid input/output response of the network
(and activation pattern on all hidden neurons). Specifically, this penalty function
penalizes the sum of all of the “slack” variables for the entire network, where each
neuron’s slack variable is defined as s; = y; — (W; -y;_1 +b;). That is the distance
between a relaxation variable y; and the linear response of its associated neuron.
During each feasibility/inference call, this has the obvious effect of incentivizing
the convex solver to choose an actual input/output response of the network.

In addition, this penalty is effectively the Li-norm of the vector of all the slack
variables, since the slack variables are non-negative. The Li-norm of a vector,
used as a penalty function, is well known to effectively encourage sparsity on the
resulting optimal solution. Thus, the sum-of-slacks effectively incentivizes the
convex solver to leave as few neurons as possible indeterminate in the solution.
That is a sum-of-slacks penalty effectively encourages the convex solver to fix
the phases of as many neurons as possible.

4.2 Max-Slack Conditioning Priority

As noted above, the search component of PEREGRINN operates layer-wise
from input layer to output layer in order to leverage Symbolic Interval Analysis
for additional inference. Hence, the search component always chooses the next
neuron to be searched (i.e. conditioned) from among those as-yet-unconditioned
neurons that are closest to the input layer. It further makes sense to only consider
conditioning neurons that the convex solver was unable to operate at valid
inputs/output. However, the convex solver typically returns several neurons to
choose from with this property, and it is necessary to choose which of them to
search next. Given the interpretation of a neuron’s “slack” variable as a measure
of how “problematic” that neuron was for the solver to obtain a valid evaluation
of the network, PEREGRiINN'’s search component chooses the next neuron to
condition based on slack-order ranking of those neurons that are not being
operated at valid input/output points. This “max-slack” heuristic choice is unique
to PEREGRINN; compare to the output gradient heuristic employed in [31].

4.3 Layer-wise-Weighted Penalty

PEREGRINN takes the “max-slack” neuron search priority one step further,
though. Using techniques similar to those in [26], it is possible to show that there
exists weights q1, ..., ¢, such that solving (2) with the penalty

n ki
ymir; g E qiSij (5)
05-Yn i—0]:1

6 Khedr et al.

will result in a solution that is guaranteed to concentrate the most total slack in
the earliest (unconditioned) layer. Thus, by using the layer-wise weighted sum-of-
slacks penalty in (5), PEREGRINN is uniquely able to force the (unconditioned)
layer closest to the input layer to have the largest total slack among all the layers.
As a consequence, PEREGRINN effectively concentrates the most “problematic”
neurons in the layer where the next conditioning choice will be made. This scheme
makes it much more likely that the neuron with the highest slack among all of
the neurons will be among the next neurons considered for conditioning — in
effect, often guiding the search component to condition on the most problematic
neuron in the whole network (although this is not guaranteed).

As noted above, SMC [26] can be used to obtain layer-wise weights that
guarantee concentration of slack in the earliest (shallowest) layer. However, these
weights are often very large, since they depend on bounding the slack variables
(most readily by over-approximation); the effect of this is possible computational
instability in the convex program. Thus, as an implementation matter, we instead
select these weights using a heuristic scheme characterized by two real-valued
hyperparameters, \g and 7. In particular, the weight of the i*? layer, ¢;, is selected
as ¢; = Ao - 7*. In our experiments, we found the values \g = 10~7 and v = 103
to effectively achieve the maximum slack concentration in the earliest layers.

4.4 Initial Counterexample Search by Sampling

Finally, PEREGRINN extends a simple idea first introduced in [32] to rapidly
identify counterexamples by means of sampling. The basic idea is to sample within
a known region of the input to the NN (or the input to some deeper layer), and
evaluate the NN (sub-NN) exactly on those samples in order to rapidly identify
a counterexample; this approach help identify un-safe networks/properties early
on. However, whereas [32] samples from within hyper-rectangle sets derived by
symbolic interval analysis, PEREGRINN uses the Volesti [12] Python library to
uniformly sample points within the polytopic input constraint set, P, and thus
applies to be more general input constraint sets in (1).

5 Experiments

We evaluated the performance and effectiveness of PEREGRINN at verifying
the adversarial robustness of NNs trained to recognize digits using the standard
MNIST dataset. This verification problem fits into the general NN verification
problem described in Section 2, and it is described subsequently in detail. In this
context, we evaluated PEREGRINN with two objectives described as follows.

1. We conducted ablation experiments for all of PEREGRiINN’s novel features
as described in Section 4. In particular, we compared the performance of a full
implementation of PEREGRINN —i.e. ezactly as described in Section 4 — with
implementations that are otherwise the same except for changing one and
only one of the following: the penalty function used in the convex program
inference block; the neuron prioritization used by the search component.

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 7

Table 1: Architecture of the NN models used in the experiments

Models # ReLUs Architecture
MNIST FC1| 512 <'784,256,256,10>
MNIST FC2| 1024 <'784,256,256,256,256,10>
MNIST FC3| 1536 |<784,256,256,256,256,256,256,10>

2. We compared PEREGRINN against other state-of-the-art NN verifiers, both
in terms of the time required to verify individual networks and properties and
in terms of the number of properties proved with a common, fixed timeout.

Implementation. We implemented PEREGRINN in Python, and used an
off-the-shelf Gurobi 9.1 [1] convex optimizer for solving linear programs; the
Volesti [12] Python interface was used to sample from the input polytope for the
sampling inference block. For the other NN verifiers, we used publicly available
implementations that were published by their creators (citations are included
below). Each instance of of any verifier was run within its own single-core Virtual
Box VM with 30 GB of memory; no more than 4 VMs were run concurrently on
a host machine with 48 hyperthreaded cores and 256 GB of memory.

5.1 Adversarial Robustness Verification Task

Subsequent experiments used the testbench we describe in this section; it is
largely identical to the PAT-FCN test in the VNN-COMP 2020 competition [2].

Neural Networks. We used three ReLU NNs to recognize digits using the
standard MNIST training database; these NNs are exactly as in the PAT-FCN
portion of [2]. The sizes of these fully-connected networks are described in Table 1.
Each entry in the “Architecture” column of Table 1 is the number of number of
neurons in a layer, from input layer on the left to output layer on the right.

Verification Properties. We created a number of NN verification tasks based
on proving whether the above described networks were robust against max-norm
perturbations of their inputs. In particular, each verification task involves proving
whether a particular input image, z’, always results in the same classification
when it is subjected to a max-norm perturbation of at most some fixed size, € > 0.
Thus, each such verification problem is parameterized by both the specified input
image, x’, and the maximum amount of perturbation, e.

Formally, let 2’ be a given image in category t € {1,..., M}, and let e > 0
be a specified maximum amount of max-norm perturbation of z’. Then we say
that a NN with M classification outputs, NN, is robust if for each classification
category m € {1,..., M} \ {t} the set of inputs yielding classification of 2’ as m

bm 2 {x |z e RF ||z — 2'||0o <€, 2z € R*, _max NN (z); = NN(x)m} (6)

is empty. Note that each instance of (6) is compatible with the problem in (1).

8 Khedr et al.

Adversarial Robustness Verifier Testbench Our verification testbench was
then constructed by selecting 50 test images from the MNIST test dataset; this
set of test images includes the 25 used in the PAT-FCN portion of [2]. Each test
instance was then a combination of one of those images, one of the networks
from Table 1 and one the following two max-norm perturbations, e = 0.02 or
€ = 0.05; these perturbations are same ones used in PAT-FCN [2]. Thus, each
verification test in our testbench can be identified by one of 300 tuples of the
form: (net, image, perturb.) € F% = {FC1,FC2,FC2} x {1,...,50} x {0.02,0.05}.

5.2 Ablation Experiments

In this series of experiments we evaluated the contribution that each of the
primary PEREGRINN enhancements made to its overall performance. This was
done by comparing the full PEREGRINN algorithm — as described in Section 4 —
with altered versions that replace exactly one of those enhancements at a time.
Note: removing core features of PEREGRINN often resulted in much longer
run times, so the experiments in this section use a testbench %' C J% that
excludes all tests with one of the larger networks FC2 or FC3 and ¢ = 0.05.

Penalty Function Ablation. Our first ablation experiment evaluated the
contribution of PEREGRINN’s unique penalty function features; see Section 4.1
and Section 4.3. In particular, we ran different variants of PEREGRINN with
the following penalty functions used inside the convex program inference block:

1. “Weighted sum of slacks”> PEREGRiINN’s own weighted sum of slacks penalty;

2. “Sum of slacks” A sum-of-slacks penalty with equal weighting on all layers;

3. “Feasibility” A feasibility-only convex program such as the one used in other
tools, e.g. [31] (i.e. simply using a constant penalty function of 1);

4. “Inverted weighted sum of slacks” PEREGRiINN’s own weighted sum of slacks
penalty, except with the layer-wise weights applied in reverse order to force
slack towards deeper layers rather than shallower ones (see also Section 4.3).

Fig. 2a shows a cactus plot of the number of proved cases vs. the timeout
permitted to the algorithm: i.e. to prove at least a specified number of the test
cases, each algorithm must have its timeout set at to the value of its curve in
Fig. 2a. Fig. 2b shows a histogram of the number of times each of the algorithm
variants needed to call the convex solver in order to terminate; this quantifies
each algorithm’s cost in a well-known unit of computation, also the single most
computationally costly part of PEREGRINN. Fig. 2b plots the number of convex
solver calls required for evenly spaced bins of convex solver calls.

Conclusions: Fig. 2a demonstrates that PEREGRINN’s weighted sum of
slacks has a clear benefit over both a uniformly weighted sum-of-slacks penalty
and a plain feasibility convex program. For timeouts of longer than /1.2 seconds,
PEREGRINN overtakes the other two in terms of number of properties proved;
even the uniform sum-of-slacks penalty considerably outperforms the feasibility
convex program at similar timeouts. Note that reversing the layer-wise weights of
PEREGRINN'’s penalty function incurs a performance hit, especially for timeouts

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 9

» 125 H [Inverted Weighted Sum of Slacks
g 1 Weighted Sum of Slacks

) g 100 Uniform

b3 £ [Feasibility

E] s

5] 2 504

£ o

S £
8 25

10° 4 ° e i

0 100 200 300 400 500 600 700 800

0 20 40 60 80 100 120 140 160
Number of convex program calls

Proved cases

(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 2: Performance of PEREGRINN variants with different objective functions

>1.2 seconds. This suggests that driving slacks toward shallower layers, where
the next neuron is conditioned, is the correct heuristic to apply. Fig. 2b also shows
that going from feasibility to sum-of-slacks to weighted sum-of-slacks significantly
reduces the number of test cases that require between 425 and 525 calls to the
convex solver. This order of comparison shows a concomitant net influx of tests
into the lowest bin of <25 convex calls; PEREGRINN has the most test cases in
this category, with ~130 test cases proved in <25 convex solver calls.

Neuron Conditioning Priority Ablation. In the second ablation experiment,
we evaluated the contribution of PEREGRINN’s maximum-slack neuron condi-
tioning priority (see Section 4.2). To that end, we ran variants of PEREGRINN
with three different neuron conditioning priorities for the search component:

1. “Mazimum slack” PEREGRINN’s max-slack neuron conditioning priority;
2. “Minimum slack” This variant conditions the neuron with the smallest slack;
3. “Random choice™ This variant conditions on a random indeterminate neuron.

The performance of these algorithm variants is shown in Fig. 3a and Fig. 3b. As
in the previous ablation experiment, Fig. 3a shows a cactus plot of the number
of proved cases vs. the timeout, and Fig. 3b shows a histogram of the number of
calls to the convex solver required under each of the conditioning priorities.

Conclusions: Fig. 3a shows that PEREGRiINN’s max-slack neuron priority
allows it to prove slightly more properties than either a random neuron choice
priority or the minimum-slack priority. The maximum slack priority also required
the fewest total convex calls across all instances: it used 178 fewer than minimum
slack and 686 fewer than a random choice. Thus, we conclude PEREGRiINN’s
max-slack heuristic slightly improves performance on this testbench.

5.3 Comparison with Other NN Verifiers

In this experiment, we evaluated PEREGRINN with respect to a number of
state-of-the-art NN verifiers on our adversarial robustness testbench, 4. In
particular, we ran the following tools on Z%: Venus [6]; Marabou [19]; Neu-
rify [31]; and nnenum [4]. Venus was run with st_ratio=0.4, depth_power=4,
offline_deps = True, online_deps = True, and ideal_cuts = True; Marabou

10 Khedr et al.

-
N
o

Random choice
Minimum slack
[Maximum slack

—— Max slack
Min slack
—— Random choice

Timeout(sec)
-
B

=

~ (=3

v o

o
o
"

-
<
Verification instances

25
100_
T T T T T T T T 0 L=t ; T ; T T
0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 700 800
Proved cases Number of convex program calls
(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 3: Performance of PEREGRINN variants with different conditioning priorities

and Neurify were used with default parameters but THREADS = 1; and nnenum
had ADVERSARIAL_SEARCH turned off. Each algorithm had its own one-core VM.

Fig. 4 contains a cactus plot showing the results for each of these algorithms,
including PEREGRINN. For a given number of test cases to be proved, Fig. 4
depicts the corresponding timeout required for each of the algorithm to prove
that many cases. Of all the algorithms, PEREGRINN was able to prove the
most properties within the timeout limit of 600 seconds: PEREGRINN was able
to prove 190 properties; it was followed by nnenum, which proved 172; Venus,
which proved 159; Neurify, which proved 149; and Marabou, which proved 125.
Marabou consistently performed the worst, proving fewer cases than any other
algorithm at every timeout. By contrast, Neurify was able to prove significantly
more test cases than any other algorithm for extremely short timeouts, but it
failed to prove more than 150 out of 300 test cases across the whole experiment.
nnenum performed worse than Neurify on the way to proving 150 test cases, but
it fared significantly better than either PEREGRINN or Venus, which had more
or less similar performance below this threshold. However, after ~150 test cases,
PEREGRINN significantly outperformed all other algorithms: as the timeout
was increased, PEREGRINN proved additional properties at a rate significantly
outpacing its closest competitor in this regime, nnenum. We further note that all
algorithms proved a mixture of SAT and UNSAT properties.

This data, taken as a whole, suggests that PEREGRINN suffers from a worse
“best-case” performance than several other algorithms, especially nnenum and
Neurify. However, PEREGRiINN’s performance seems to be much more consistent
across different test cases. This allows it to prove more properties in aggregate at
the expense of being slower on a smaller subset of them. This further suggests
that PEREGRINN is significantly less sensitive to peculiarities of particular test
cases on the J9% testbench. This will likely be a considerable advantage, on
average, when faced with verifying unknown networks and properties of this type.

6 Discussion: Analogy to SAT Solvers

It is possible to draw a loose analogy between SAT solvers and search-and-
optimization NN verifiers such as PEREGRINN. Indeed, since each neuron
has two phases, the operational phase of each neuron can be captured by a

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 11

102 J ’II__/
101 . = PEREGRINN

[T Venus

= nnenum
= Marabou
= Neurify

10° 4

Timeout(sec)

1071 4

0 25 50 75 100 125 150 175
Proved cases

Fig. 4: Cactus plot of various solvers on 300-case testbench, J%

binary variable; then any valuation of all these variables can be interpreted as
SAT or UNSAT based on the Input/Output properties to be verified on the
network (subject to that conditioning). Thus, the neuron conditioning step in
PEREGRINN is analogous to variable splitting in a SAT solver, and the backtrack
and re-condition block (see Fig. 1) functions analogously to backtracking. In
this analogy, infeasibility of the convex program and symbolic interval analysis
function roughly like unit resolution in a SAT solver: they soundly reason about
the overall property before all neurons have been conditioned (i.e. variables split).

However, the main contribution of PEREGRINN is a heuristic for deciding
which neuron to condition next: it is thus analogous to a heuristic for choosing
the next variable to split in a SAT solver. Specificallyy, PEREGRiNN’s heuristic
provides a numerical ranking of the as-yet-unconditioned neurons, and therefore
has a functional similarity to variable-ranking heuristics in SAT solvers (e.g.
VSIDS [24]). On the other hand, PEREGRiINN’s neuron ranking comes directly
from the output of the convex solver, which we argued reveals some information
about the underlying verification problem — this has no direct SAT-solver analog.

7 Conclusion

In this paper, we introduced PEREGRINN, a new tool for formally verifying
input/output properties for ReLU NNs. PEREGRINN compares favorably with
other state-of-the-art NN verifiers, thanks to a number of unique algorithmic
features. The benefits of these features were established with ablation experiments.

References

1. Gurobi optimizer 9.1, http://www.gurobi.com

2. International Verification of Neural Networks Competition 2020 (VNN-COMP’20).
https://sites.google.com/view/vnn20

3. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Mathematical
Programming 183(1), 3-39 (2020). https://doi.org/10.1007/s10107-020-01474-5

4. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved Geometric Path Enu-
meration for Verifying ReLU Neural Networks. In: Lahiri, S.K., Wang, C. (eds.)
Computer Aided Verification, Lecture Notes in Computer Science, vol. 12224,

http://www.gurobi.com
https://sites.google.com/view/vnn20
https://doi.org/10.1007/s10107-020-01474-5

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Khedr et al.

pp. 66-96. Springer International Publishing (2020). https://doi.org/10.1007/
978-3-030-53288-8 4, http://link.springer.com/10.1007,/978-3-030-53288-8 4
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi,
A.: Measuring neural net robustness with constraints. In: Advances in Neural
Information Processing Systems. vol. 29, pp. 2613-2621 (2016)

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient
verification of ReLU-based neural networks via dependency analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 3291-3299 (2020).
https://doi.org/10.1609/aaai.v34i04.5729

Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research 21(42), 1-39 (2020)

Cheng, C.H., Nithrenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) Automated Technology for
Verification and Analysis. pp. 251-268. Springer (2017). https://doi.org/10.1007/
978-3-319-68167-2 18

Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks (2017), https://arxiv.org/abs/1709.09130

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to
scalable verification of deep networks. In: Globerson, A., Silva, R. (eds.) Uncertainty
in Artificial Intelligence. vol. 1, pp. 550-559 (2018)

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Kumar, K.N. (eds.) International Symposium on Automated
Technology for Verification and Analysis. pp. 269-286. Springer (2017). https:
//doi.org/10.1007,/978-3-319-68167-2 19

Emiris, I.Z., Fisikopoulos, V.: Practical Polytope Volume Approximation. ACM
Transactions on Mathematical Software 44(4), 38:1-38:21 (2018). https://doi.org/
10.1145/3194656

Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 32, pp. 11423-11434. Curran
Associates, Inc. (2019)

Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296-309 (2018). https://doi.org/10.1007/s10601-018-9285-6
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3-18.
IEEE (2018). https://doi.org/10.1109/SP.2018.00058

Goodfellow, I.J., Shlens, J., Szegedy, C.S.: Explaining and harnessing adversarial
examples (2014), https://arxiv.org/abs/1412.6572

Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, 1.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control. pp. 169-178. HSCC ’19, Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3302504.3311806

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks. In: Majumdar, R.,
Kuncak, V. (eds.) Computer Aided Verification. pp. 97-117. Lecture Notes in
Computer Science, Springer International Publishing (2017). https://doi.org/10.
1007/978-3-319-63387-9 5

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://link.springer.com/10.1007/978-3-030-53288-8_4
https://doi.org/10.1609/aaai.v34i04.5729
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://arxiv.org/abs/1709.09130
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3194656
https://doi.org/10.1145/3194656
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 13

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S.;, Wu, H., Zelji¢, A., et al.: The marabou framework for verification
and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification. pp. 443-452. Springer International Publishing (2019). https:
//doi.org/10.1007,/978-3-030-25540-4 26

Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world
(2016), https://arxiv.org/abs/1607.02533

LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/ (1998)

Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
Verifying Deep Neural Networks (2019), http://arxiv.org/abs/1903.06758
Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks (2017), https://arxiv.org/abs/1706.07351

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference.
pp. 530-535 (2001). https://doi.org/10.1145/378239.379017

Royo, V.R., Calandra, R., Stipanovic, D.M., Tomlin, C.: Fast neural network
verification via shadow prices (2019), https://arxiv.org/abs/1902.07247

Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: Satisfiability Modulo Convex Programming. Proceedings of the
IEEE 106(9), 16551679 (2018). https://doi.org/10.1109/JPROC.2018.2849003
Song, D., Eykholt, K., Evtimov, 1., Fernandes, E., Li, B., Rahmati, A., Tramer,
F., Prakash, A., Kohno, T.: Physical adversarial examples for object detectors. In:
Proceedings of the 12th USENIX Conference on Offensive Technologies. WOOT’18,
USENIX Association (2018)

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, 1., Fergus,
R.: Intriguing properties of neural networks (2013), https://arxiv.org/abs/1312.6199
Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017), https://arxiv.org/abs/1711.07356

Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W.,
Bak, S., Johnson, T.T.: Nnv: The neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification. pp. 3-17. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-53288-8 1

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems.
vol. 31, pp. 6367-6377 (2018)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Conference on Security Symposium. pp. 1599-1614. SEC’18, USENIX Association
(2018). https://doi.org/10.5555/3277203.3277323

Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope (2017), https://arxiv.org/abs/1711.00851
Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety
verification for neural networks with relu activations (2017), https://arxiv.org/abs/
1712.08163

Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and verifi-
cation for multilayer neural networks. IEEE transactions on neural networks and
learning systems 29(11), 5777-5783 (2018). https://doi.org/10.1109/TNNLS.2018.
2808470

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://arxiv.org/abs/1607.02533
http://yann. lecun. com/exdb/mnist/
http://yann. lecun. com/exdb/mnist/
http://arxiv.org/abs/1903.06758
https://arxiv.org/abs/1706.07351
https://doi.org/10.1145/378239.379017
https://arxiv.org/abs/1902.07247
https://doi.org/10.1109/JPROC.2018.2849003
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.5555/3277203.3277323
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1712.08163
https://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

	PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier

